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Abstract. The asymptotic behaviour of quantum mechanical states at large times has been 
discussed in two recent papers by Wan and McLean. In a third paper a detailed study of 
the corresponding behaviour of observables was made. The mathematical properties of 
asymptotic operators obtained are applied in this paper to establish an algebraic formulation 
of quantum mechanics which has the characteristic of being asymptotically separable. The 
age old non-locality problem in quantum mechanics can then be effectively tackled. 

1. Introduction 

The algebraic approach to quantum field theory and to infinite quantum systems is 
well known and well established (Haag and Kastler 1964, Emch 1972, Bogolubov et 
al 1975, Bratteli and Robinson 1979, 1981). The idea is to associate a C*-algebra 
with a physical system so that the self-adjoint elements of the algebra correspond to 
observables and positive linear functionals on the algebra correspond to states of the 
system. Such an approach is also applicable to quantum mechanical systems, i.e. 
systems consisting of a fixed and finite number of particles (Segal 1947, Bogolubov et 
a1 1975). The simplest scheme which can reproduce the principles of quantum 
mechanics in Hilbert space is to identify the C*-algebra with the von Neumann algebra 
B ( X )  of all bounded operators on the Hilbert space X associated with the system. 
Observables are then the self-adjoint members of B ( X )  and states are describable by 
normalised positive linear functionals on B( X). 

What we shall present in this paper is a theory of quantum mechanical systems 
formulated in terms of the algebraic methods in which the C*-algebra is identified 
with a proper subset of the set B( X) of all bounded operators in the Hilbert space X. 
The theory leads to the notion of states at infinity and to quantum separability at 
infinity, hence a resolution of the de Broglie paradox in quantum mechanics. The 
physical ideas of the theory will be set out as a list of assumptions in the next section 
while the precise mathematical formulation will be given in 0 3. We should point out 
that our theory is formulated in a non-relativistic form with space and time clearly 
separated. Any localisation referred to means a localisation in space. 

2. Physical considerations 

A measuring device is invariably of finite spatial size and a measurement is always 
performed within a finite time interval. It is then reasonable to assume that a measure- 
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ment process should not be able to bring two states which are infinitely separated (in 
space) to interfere with each other. We shall formalise this by making the following 
assumption. 

Assumption 1. No measurement process can bring two infinitely separated states to 
interfere with each other. 

Now a measurement process is an operation to ascertain the values of certain 
observables. To be consistent with assumption 1 we shall exclude those observables 
in the conventional quantum mechanics which can correlate two infinitely separated 
states. Again we shall formalise this by the following assumption. 

Assumption 2. No observable can correlate two infinitely separated states. 

Obviously the assumptions stated above are intuitive ones; their meaning will be 
made precise as we go along. 

Let us consider firstly the idea of infinitely separated states. Such an idea is 
necessarily an asymptotic concept. In two recent papers Wan and McLean (1983a, b, 
hereafter referred to as papers I and 11) introduce a precise definition of asymptotic 
localisation and of asymptotic separation of states in quantum mechanics. Asymptotic 
operators were also introduced recently by Wan and McLean (1984, hereafter referred 
to as paper 111). We shall adhere to the notation used in our papers I ,  I1 and 111. We 
can now make use of the concepts introduced in these papers to enlighten our intuitions 
in assumptions 1 and 2. 

Using the notion of asymptotically separable states (papers I, 11) we can visualise 
two infinitely separated states as two asymptotically separable states c$~, 4;  in the limit 
as t tends to infinity. Using the notion of asymptotic observables we can visualise an 
observable admissible by assumption 2 to be firstly an asymptotic operator to enable 
us to talk about the expectation value of the observable as t + 03, and to be secondly 
an operator of asymptotically vanishing correlations to give a vanishing correlation 
(4*1A4;) of two asymptotically separable states 4 and 4' as t tends to infinity (paper 
111). 

We have now stated, albeit in imprecise terms, the necessary physical requirements. 
Quantum mechanics as conventionally formulated in Hilbert space violates these 
requirements. In 9 3 we shall present a theory to meet these physical requirements. 

3. Theory 

We shall now present an algebraic formulation by associating with a quantum 
mechanical system a C*-algebra which is a C*-subalgebra of B ( 2 ) .  The reason for 
taking only a subalgebra of B(%) is because we want to exclude operators which do 
not satisfy our assumption 2. For simplicity we shall present here a theory applicable 
for a free quantum particle with configuration space R". 

3.1. Postulates 

The formal statements of our formulation are set out in the first instance in the following 
two postulates. 
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Postulate 3. Any state of the system is represented by a convex combination Aw,+ 
d = d:,,n ds of operators on the Hilbert space X= L2(R") (see paper I11 for 
notation). Bounded observables correspond to self-adjoint members of d. 

Postulate 2. A state of the system is represented by a normalised positive linear 
functional w (NPLF for short) on d. If A E d is self-adjoint then w(A) is the average 
(expectation) value obtained from measurement of the observable represented by A 
in the state represented by w. 

Note that d = di +L"(p)  (paper 111) and that an NPLF on d is a map w :  d+ C 
satisfying (1) w ( Z )  = 1, I being the identity operator, (2) w(AtA) 30 VA E d and (3) 
w(A1Al+A2A2)=Alw(A1)+A2w(A2) V A I , A 2 e d  and VAl,  A*EC (Haag 1972). 

3.2. On the observables 

Many of the mathematical properties of d are given in paper 111. We have chosen d 
in setting up postulate 2 because it is the maximal algebra among the weak, the strong 
and the uniform topologies on B ( X )  possessing the three desired properties, i.e. d is 
a C*-algebra as well as asymptotic algebra and each element of d has asymptotically 
vanishing correlations. 

For an idea of the kind of operators included in d we would mention quasi-local 
operators in dL (paper 111), compact operators and all finite-dimensional projectors 
in particular. An example of familiar observables excluded because of the requirement 
that an observable must belong to d:", is the parity operator 9 defined on X by 
9 4 ( x )  = = +(-x). 9 commutes with the free particle Hamiltonian H,, but not with 
the momentum p. We can intuitively see that 9 can correlate states large distances 
apart. Anyone unduly alarmed by the exclusion of the well known parity operator 
may be reminded that we do still have local parity operators. For a discussion of local 
observables we refer to Wan and Jackson (1983) and Wan et a f  (1983). The whole 
point of excluding observables with infinite spatial correlations is to enable us to 
construct a theory which is asymptotically separable while retaining locally the essential 
features of the existing quantum mechanics. All this will become clear as we go on. 

Finally as an example of an (unbounded) observable (an unbounded observable 
may be introduced as a self-adjoint operator on X whose spectral projectors are all 
in a)  excluded because of the asymptotic convergence requirement we mention the 
position operator x, = ( p t / m ) + x  which obviously does not converge as t tends to 
infinity. 

3.3. On states 

Our postulate 2 conforms with the usual practice in algebraic theories. However it 
may well be that not every NPLF should give rise to a state as this may create many 
unphysical states (Primas and Miiller-Herold 1978). In order to bring out the physical 
ideas and results quickly and simply we shall in this paper restrict the states to a subset 
of NPLFS consisting of all the normal NPLFS and the normal NPLFS at infinity defined 
below. 

Definition 1 .  Normal states. An NPLF w on d is normal if w corresponds to a density 
operator p on X in that w(A) = Tr(pA) for every A E d. 

Obviously every one-dimensional projector P on 2 defines a normal NPLF by 
w(A) =Tr(PA). Tr(PA) is of course just the expectation value (4 ! A d )  where 4 is a 
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normalised vector in X associated with the projector P. We shall denote this NPLF by 
U+, More generally we shall write up. 

Definition 2. An N P L F W ~  on d will be called a normal NPLF at infinity if there is a 
density operator p such that 

VA E d. wm(A) =lim Tr(pAr) 

Theorem 1.  Let p be a density operator; then the formula 

oT(A)  = lim Tr(pA,) 

defines an NPLF U: on d. Also 

w : ( A ) = O  V A E ~ ; .  

Proof. Let A E d; then A = T +  G for some T E  d& G E L"(p). Then for every 4 E X' 
we have lim(4 I A A )  = (4 I Gd). 

consisting of eigenvectors of p 
and for each k let hk be the eigenvalue associated with +k. 

Let { +k: k = 1,2, . . . } be an orthonormal basis of 

Since XT=, hk = 1 it follows that X;P,, hk($k I G+k) exists and also that 

since the sum is uniform by the Weierstrass M-test (Apostol 1974). Hence 
m 

w;(A) = lim ($k 1 pAt$k)  
f-m k = l  

cn m 

so U; is well defined. 
Clearly 
To show U ;  is positive observe that if A = T +  G as above then 

is linear and @;(I) = ETEl hk = 1. 

ll(TtG),$ll = llT: (G$)Il, II(GTt)rrCIII IIGIIIICILII 
imply that T t T +  T t G + G T t ~ d ;  so 

w ; ( ~ t ~ )  = @ ; ( T ~ T +  T + G + G ~ T +  G+G) 

= G+G) 

= Ak($kIGtG$k)aO. 
k = l  

Finally if A E d{ then G = O  so w ; ( A )  = 0. 

Corollary 1 .  Every normal NPLF wp generates a normal NPLF at infinity to be denoted 
by U: and every normal NPLF at infinity arises from a normal NPLF. 

We shall assume that the states of our system are generated by the normal NPLFS 

and the normal NPLFS at infinity. So we now replace postulate 2 by the following 
postulate. 
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Postulate 3. Any state of the system is represented by a convex combination Aw,+ 
p w z  ( A ,  p 3 0 ;  A + p = 1) of a normal NPLF and a normal NPLF at infinity. Conversely 
every such convex combination represents a possible state. 

Henceforth we shall refer to normal NPLFS as normal states and normal NPLFS at 
infinity will be called simply states at infinity. If A is a bounded Borel set of (w" and 
E, is the spectral measure of position then &(A) E dS, so for any state at infinity 
the expectation value w;(E , (A) )  vanishes, leading to a zero probability of finding 
the particle in A. 

Before proceeding further let us carry out the customary classification of states 
into pure and mixed states. 

Definition 3. Pure and mixed states. A state w is pure if it cannot be decomposed into 
a non-trivial convex combination of two different states i.e. if 

O < A < l ,  w = Awl + ( 1 - A ) w z J w  = 01 = ~ 2 .  

Otherwise the state is called mixed and is said to be a mixture of the states w 1  and w2.  

Theorem 2. For every unit vector 4 E L2((w"), w4 is a pure state on d. 

Proof. We know from I11 that the von Neumann algebra generated by d is B( X) and 
it follows that d is irreducible and hence 4 is a cyclic vector for d. 

Let i :  d + B( X) be the inclusion map i (A)  = A ;  then i is clearly an irreducible cyclic 
representation of d with cyclic vector 4 such that w , ( A )  = (4 I i (A)4 ) .  

Hence i is unitarily equivalent to the GNS representation associated with w4 and 
so the latter is also irreducible. It follows that w4 is pure. 

The steps in this argument are justified by proposition 2.3.8 and theorems 2.3.16 
and 2.3.19 of Bratteli and Robinson (1979). 

Definition 4. Asymptotically disjoint states. Two normal states up, and wm are said to 
be asymptotically disjoint if lim(9, 1 A$,) = 0 for all A E d whenever 9 is an eigenvector 
of p1 and J, is an eigenvector of p2 .  The corresponding states at infinity, w: and W E ,  
are said to be disjoint. 

In particular w, and w, are asymptotically disjoint if lim(4, I A$,) = 0 for all A E d, 
and w; and w: are disjoint. 

Before presenting the central theorems of our formulation we prove a lemma. 

Lemma 1 .  Let 4, II/ E L2((w") and let E, be the spectral measure of position; then these 
are equivalent: 

(1) V Borel sets of R", ( 4 I &(A)$) = 0. 
(2) There are disjoint Borel sets A,,  A2 of R" with &(Al)+ = 4, Ex(A2)J, = 4. 

Proof. We need only show [1]=3[2] the converse being obvious. So assume jA $4 = 0 
for all A. 

Let U be the real part of $4 and let U+, U -  be the positive and negative parts of 
U ;  then 

VA. 
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Let A+ = {x: u ' ( x )  # 0) and A- = {x: u-(.r) # 0); then A+, A- are measurable and A+ n 
A- is empty. Hence 

U +  = 5,- U +  = 5,- = 0, 

so U +  = 0 almost everywhere. Similarly U- = 0 almost everywhere and an identical 
argument applied to the imaginary part of $11, gives $11, = O  almost everywhere. 

Thus 4(x)  = 0 or +(x) = 0 for almost all x E R". Now let A l  = {x: 4(x) # 0}, A2 = 
{x: $(x) # 0); then A l ,  A2 are measurable, Er(Al)4 = 4, Ex(A2)11, = 11, and 

A l  n A, = {x: 4(x) # 0 and $(x) # 0) 

which has measure zero. (2) follows from this. 

Theorem 3. The pure states w+ and wJ. on d are asymptotically disjoint if and only 
if they correspond to disjoint momentum values i.e. if and only if there are disjoint 
Bore1 sets A l  and A2 of R" with Ep(Al)4 = 4 and Ep(A2)+  = 11,. 

Proof. 
(i) Suppose qb and 11, correspond to disjoint momentum values; then for all B E I,%( p )  

l i d 4  I Bf$) = (4 I BIL) = 0. 

Also for all A E di we have limllA11,,11= 0 so lim( 4 1 A,+) = 0. Since s8 = d: + L"(p) 
it follows that U+, wJ. are asymptotically disjoint. 

(ii) If wd and U+ are asymptotically disjoint then for any spectral projector Ep(A)  
of momentum 

( 4  I Ep(A)+) = lim(4 I (Ep(N)f+) = 0 

and it follows from lemma 1 and the relation E,,(h-'A) = FtE,(A)F (Wan and McLean 
1984) that 4 and 11, correspond to disjoint momentum values. 

We recall from papers I and I1 that 4, $ E  L2(R") are said to be asymptotically 
separable if there are disjoint n-dimensional cuboids [U, w] and [U', w'] in R" such that 
4, 11, are asymptotically localisable in the disjoint regions [ut, wt] and [u ' t ,  w't] respec- 
tively, i.e. 

lim(lE,[ ut, ~ t ] 4 ~ ( / ~  = 1 = limllE,[u't, w't]Jl,ll2. 

Corollary 2. 
(1) If 4, 11, are asymptotically separable then U+ and wJ. are asymptotically disjoint. 
(2) Two states wp, and wp2 are asymptotically disjoint iff 4 and 11, correspond to 

disjoint momentum values whenever 4 is an eigenvector of pl and 11, is an eigenvector 
of P 2 .  

Proof. 
(1) follows from corollary in I1 while (2) is obvious. 

Theorem 4. Let 4, and 42 be unit vectors in L2(R") such that 41 and 42 correspond 
to disjoint momentum values and + = A 4 , + ~ 4 ~  where A,p ZO. Then w ;  = 
I A 12w7, + IP 124,. 
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Theorem 5. 
(1) Every state at infinity on d is mixed. 
(2) A state on d is pure if and only if it is of the form U+ for some 4 E L2(R"). 
(3) Every pure state evolves into a mixed state as ?+=a.  

Proof. 
(1) Follows from theorem 4. 
( 2 )  Each wd is pure by theorem 2. 
By postulate 3 every state is a convex combination of a normal state and a state 

at infinity. Since no state at infinity is equal to a normal state it follows from (1) that 
any pure state must be normal. If p is a density operator which is not a one-dimensional 
projector it is easily verified that w p  is mixed and hence every pure state is of the form 

(3) Clearly w+ evolves into w: and now the assertion follows from ( 1 )  and ( 2 ) .  

We conclude this section on states by noting that any two states of the form U*, 

w$ are coherent in the sense that ( 4  I A$) is non-zero for some A E d. For if A is the 
compact operator defined by 

Af =(Jllf)4 V f E X  

then A E d by theorem 5 of I11 and clearly ( 4  I A$) # 0. 
Finally we would point out the easily verified results that d: is a subalgebra of d 

as well as a closed two-sided ideal in d, and that the quotient algebra d/di is 
isomorphic to L"(p)  and hence to L"(R"). Positive normalised functions in L'(R") 
correspond to normal NPLFS at infinity. 

3.4. Time evolution 

Following the usual practice we make the following postulate. 

Postulate 4. The time evolution of the system is described by a one-parameter group 
{a r :  r E R} of automorphisms of d. 

For the system under consideration, i.e. a free quantum particle, we have 
a r (A)  = U?+AU: V A E ~  

( a ,  is an automorphism since Up E d). 

In the Heisenberg picture the time evolution of an observable A is given by 
A, = a,(A).  We can also work in the Schrodinger picture in which a state w evolves 
in time according to w,(A) = w ( a , ( A ) ) .  
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It follows that (w , ) ,=w, ,  so that we recover the usual quantum mechanical 

(1) in the Heisenberg picture A E Lm( p )  does not evolve in time, 
(2) in the Schrodinger picture states at infinity do not evolve in time. 
Case (1) is obvious. Since an arbitrary element of d is of the form A = T +  G with 

evolution of states. Two special cases present themselves: 

T E d; and G E L"( p )  we have V t  E R 

w;"(A)  = W"(.,(T))+o"(aAG)) 

= U"( G )  

="(A) 

verifying assertion (2).  

lim w , ( A )  = w " ( A )  VA E d. 
Finally we shall say that a state w evolves in time into a state at infinity w m  if 

4. Quantum separability and the de Broglie paradox 

Let us examine the physical implications of postulates 1 and 3 and of the results 
subsequently obtained in the preceding section. By restricting the C*-algebra associ- 
ated with the system to d and the introduction of states at infinity the theory possesses 
a feature which is absent in the conventional quantum mechanics, namely, the theory 
is asymptotically separable in the sense that: 

(i) A pure state can evolve in time into a mixture. 
(ii) Two coherent pure states can evolve in time into two disjoint states. 
(iii) The reason for (i), (ii) above is due to asymptotically vanishing correlations 

between spatially infinitely separating states. 
The separability of the theory enables us to tackle those age old problems not 

readily soluble in the conventional non-separable quantum theory. Let us briefly list 
some of these problems. 

(1) The transition of a pure state into a mixture (arising from the von Neumann 
projection postulate) after a measurement as exemplified by the paradox of Schrodin- 
ger's cat (Wan 1980). Conventional quantum mechanics forbids such a transition but 
our theory explicitly allows such a transition, albeit asymptotically. 

(2) In conventional quantum mechanics a coherent superposition of two states 
A4 + p+b is pure for all times while our formulation allows such a coherent superposition 
of certain states to evolve into a mixture. The de Broglie paradox (Selleri and Tarozzi 
1981) ceases to be a problem in the present theory. 

(3) The characterisation of a system at infinity in our theory becomes very simple. 
At large times and consequently at large distances away from the origin, a quantum 
system is characterisable, say to an observer near the origin, in the present theory in 
the following fashion: 

(i) States: The system at infinity admits only states at infinity. These states give 
zero expectation value with respect to quasi-local observables. 

(ii) Observables: Only observables in L"( p )  can give non-zero expectation values 
with respect to a". Hence only observables in L"(p) are relevant to a system at 
infinity. We call observables in L"(p) ,  and also p and Ho observables at infinity. 

(iii) Asymptotic superselection rule: A notion closely related to observables at 
infinity is that of superselectors at infinity (Wan 1980) introduced below. 
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Definition 5. Superselectors at infinity. A bounded operator Q" # 0 on X is called a 
superselector at infinity (or simply superselector for short) if 

( 1 )  Q" = s-lim Q, for some Q E E( X), and 
(2) s-lim[ Q, A], = 0 VA E Sp. 

Note that (2) above is equivalent to the requirement that s-lim[ Q,, A,] = 0 for all A in Sp. 

Theorem 6. A bounded non-zero operator Q" on X is a superselector at infinity if 
and only if Q" E L"( p ) .  

Proof. Let A" = s-lim A,. Then s-lim[Q,, A,] = [ Q", A"] = 0. Since A" E L"( p )  by 
theorem 8 of I11 we have 0" lying in the commutant of the von Neumann algebra 
L"( p ) .  Hence Q" E La( p )  and similarly for the sufficient condition. 

We see that self-adjoint superselectors at infinity coincide with observables at 
infinity. We can also introduce unbounded self-adjoint superselectors by the require- 
ment that their spectral projectors be superselectors. Theorem 6 tells us that there is 
really only one independent (unbounded) superselector which is the momentum p. 
Following common practice we can also introduce supersectors (Wan 1980). 

Definition 6. Supersectors at infinity. A supersector at infinity, S,,, of the superselector 
at infinity, p, is the set of states at infinity, CO:, arising from all the normal states 4 
lying in the subspace of % associated with the spectral projector E,,(A). 

Obviously two supersectors S,, , ,  S,,, are disjoint if A I ,  A2 are disjoint. 

To conclude this section we point out that terms like observables at infinity, classical 
observables, macroscopic observables, superselectors have been introduced by various 
authors (Lanford and Ruelle 1969, Hepp 1972, Primas and Muller-Herold 1978, Wan 
1980) with differing meanings. 

5. Concluding remarks and prospects 

We should point out that the formulation presented so far is not meant to be a rigid 
and final structure. In fact the formulation is flexible and it can be extended or amended 
easily. The following suffices to illustrate this. Firstly we can extend the present 
formulation for a free particle to a simple scattering system. This can be achieved in 
a similar fashion to I and 11, namely by restricting states to scattering states only. 
Secondly the present theory for a free particle itself may be extended, for example, 
by enlarging the set of states. One class of additional states comes readily to mind. 
Let CO( p )  be the set of operators of the form f( p )  where f is continuous and vanishes 
at infinity. Then C , ( p ) c L " ( p )  and for each  ER" we can define an N P L F ~ ;  on 
CdP) by 

f l Z ( f ( P ) )  =f (hk) ,  
then a: is pure and may be extended to a pure NPLF on L"(p)  (Segal 1947). 0: 
may then be extended to Sp, since every A E d is of the form T +  G with T E Sp& 
G E L"( p ) ,  by defining 

a:( T +  G) = n:(G) 

and it is easily verified that Cl? is a pure state at infinity. 
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Finally we can extend the present theory to a many particle system. The asymptotic 
separability of the resulting theory would enable us to  tackle problems like the EPR 
paradox (Einstein et a1 1935), and the quantum measurement problem. Work along 
this line is continuing. 
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